While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style Copy Citation Share to social media Give Feedback External Websites Thank you for your feedbackOur editors will review what you’ve submitted and determine whether to revise the article.
External WebsitesWhile every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style Copy Citation Share to social media External Websites Thank you for your feedbackOur editors will review what you’ve submitted and determine whether to revise the article.
External WebsitesFatima Foflonker is a computational biologist, with a Ph.D. in microbiology and expertise in algae, evolutionary genomics, and bioinformatics.
Fatima Foflonker Fact-checked by The Editors of Encyclopaedia BritannicaEncyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica Last Updated: Aug 8, 2024 • Article History Table of ContentsAsk the Chatbot a Question
Ask the Chatbot a Question
osmotic pressure, the amount of force applied to a solution that prevents solvent from moving across a semipermeable membrane. Osmosis is the spontaneous flow of solvent from a solution with a lower concentration of solutes to a more concentrated solution, with flow occurring across a semipermeable membrane. Temperature and differences in solute concentration between two solutions determine osmotic pressure. Osmotic pressure is particularly relevant in biology, in which it is involved in regulating capillary pressure, water uptake by plants, and cell size. It also has important industrial applications, including in desalination and in the generation of renewable energy.
There are three types of osmotic pressure: isosmotic, hypoosmotic, and hyperosmotic. In isosmotic pressure, the two solutions are divided by a semipermeable membrane and have the same solute concentration and therefore the same pressure. In hypoosmotic pressure, the solution inside a semipermeable membrane (e.g., a cell) has a lower solute concentration than the surrounding external solution (i.e., the internal solution is hypotonic), causing outflux of the solvent. In hyperosmotic pressure, the solution inside a semipermeable membrane has a higher solute concentration than the surrounding external solution (i.e., the internal solution is hypertonic), causing influx of the solvent.
Osmotic pressure (π) is calculated by the van ’t Hoff law of osmotic pressure: π = MRT, where M is the molar concentration of solutes (mol/L), R is the ideal gas constant, and T is temperature (in kelvins). Therefore, the osmotic pressure of a solution is proportional to the solute concentration at a given temperature.
Osmotic pressure plays a key role in biological systems. The cell membrane, for example, acts as a semipermeable membrane subject to osmotic pressure based on the cell’s external environment. A hypotonic environment outside the cell can cause the cell to swell or burst, whereas a hypertonic environment can cause the cell to shrink. Cellular adaptation to changes in osmotic pressure to maintain function is known as osmoregulation. Ways in which cells may adapt to osmotic pressure include the use of ion channels and other pumps in the membrane to regulate concentrations of ions inside the cell; the development of a more elastic cell membrane to withstand changes in cell size; and the synthesis of osmolytes, which are water-soluble organic molecules that help balance internal osmotic pressure. Osmotic pressure also can be leveraged to kill cells or to reduce microbial contamination. For example, high concentrations of salts or sugars in foods create a hypertonic environment (e.g., pickles or jams), which dehydrates microorganisms and helps preserve food for extended periods of time.
In non-woody plants, hypoosmotic pressure within root cells facilitates the transport of water from the soil up into the xylem tissues, which are vascular tissues that convey water and dissolved minerals from the roots to the rest of the plant and that provide physical support. If water is scarce, plants experience hyperosmotic pressure, which pulls water out of cells, causing the plant lose rigidity and wilt. Plants that grow in saline soils are adapted to hyperosmotic pressure and thus expend energy to generate osmolytes to help balance osmotic pressure in root cells; this allows the plants to maintain their hydration while excluding salts from the root cells.
In humans, the thin walls of capillaries act as semipermeable membranes, with plasma proteins and ions in the blood acting as solutes. The capillary membrane serves as an important place for the exchange of fluids between blood and the surrounding tissues. The pressure of blood moving through the narrow capillaries can cause fluids to flow across the membrane and out of the capillaries. Conversely, fluids are drawn into capillaries from surrounding tissues through oncotic pressure (or colloid osmotic pressure), which is osmotic pressure exerted by proteins in the blood plasma. Imbalances in this fluid exchange can lead to changes in blood volume and osmolarity, which can trigger thirst or swelling of tissues.